X-Net: Bimodal Feature Representation Learning for Satellite Images

Kenneth Tran, Department of Computer Science, NCSU
Wesam Sakla, Computational Engineering Division, LLNL
Hamid Krim, Department of Electrical and Computer Engineering, NCSU

Primary Objective

Our aim is to create a meaningful joint representation across different modality data (e.g. RGB and multispectral imagery) using deep learning with a goal of

- Identification of nuclear activity in satellite images
- Temporal analysis of satellite images to detect changes

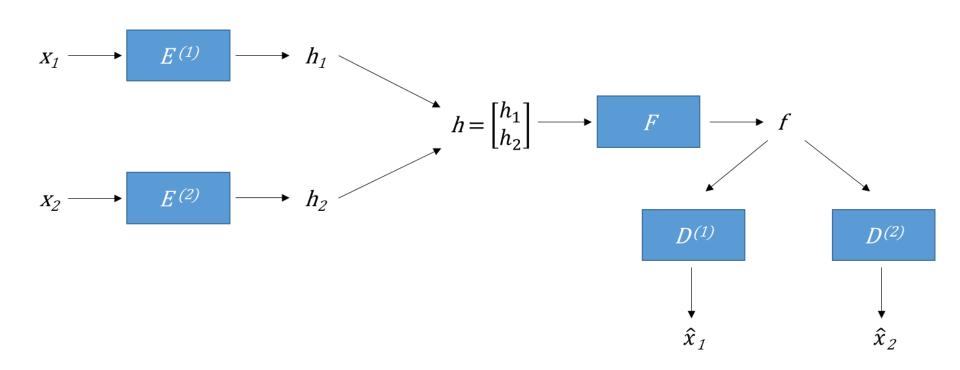
Data Set: Functional Map of the World

- 1,047,691 images covering a majority of countries
- Includes 62 named categories and an additional false detection category
- Features metadata and statistics such as the ISO Country Code, UTM Zone, and Off-Nadir Angle
- With RGB and multispectral imagery content
- Each area of interest is imaged at multiple times, making temporal analysis possible

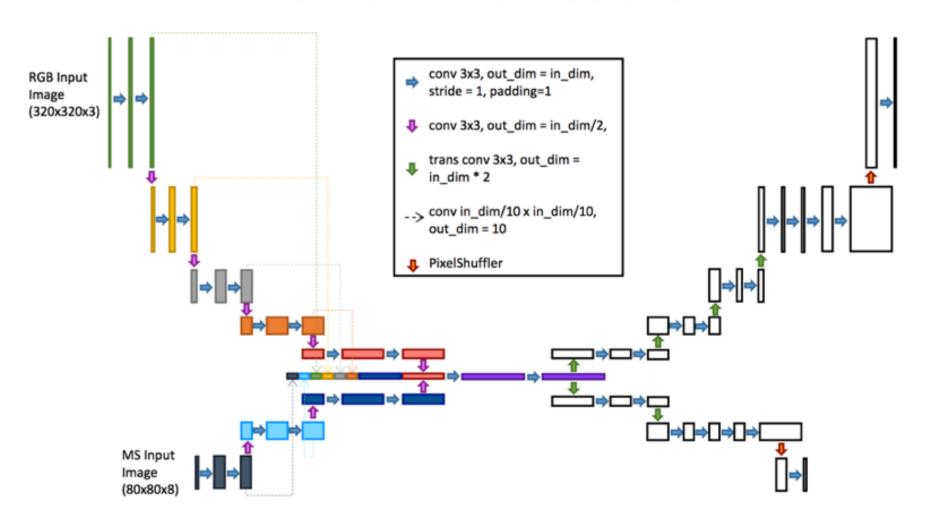
Method

- We propose a deep learning architecture inspired by recent successful architectures such as U-Net and DenseNet
- Take a semi-supervised approach by using an autoencoder structure

Joint Representation Learning



Network Architecture

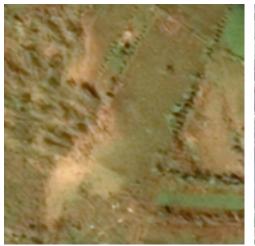


Results

Peak Signal to Noise Ratio			
	Bimodal Autoencoder	Bidirectional DNN	X-Net (our architecture)
RGB	28.086	27.947	30.384
Multispectral	28.799	28.294	33.820

Reconstruction Examples (RGB)

Input



Reconstruction

Reconstruction Examples (MS, RGB Channels Extracted)

Future Work

- Establish an inference performance-based metric by evaluation tasks such as classification or change detection
- Explore variational autoencoder models and other analytical constraints to further improve the fusion layer
- Explore additional modalities and develop robustness methodologies to failing or missing modalities in training and testing

References

- Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016.
- Christie, G. et al (in press), "Functional Map of the World," Proc. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, (2018).
- Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. Multimodal deep learning. In International Conference on Machine Learning (ICML), Bellevue, USA, June 2011.
- O. Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional networks for biomedical image segmentation", *Proc. Int. Conf. Medical Image Comput.* Comput.-Assisted Intervention, pp. 234-241, 2015.
- V. Vukotić et al. Bidirectional Joint Representation Learning with Symmetrical Deep Neural Networks for Multimodal and Crossmodal Applications. In *Proceedings of the 2016 ACM International Conference on Multimedia Retrieval (ICMR)*, pages 343–346. ACM, New York, 2016.